
st
o
p
 l
e
th

a
l
(d

e
fe

c
t)

 i
n
je

c
ti

o
n
!

Get The Cutter Edge free: www.cutter.comwww.cutter.com/consortium/ 35Vol. 18, No. 1

INTRODUCTION

If we do specification inspections
properly [2], the cost is barely toler-
able for some: about one hour of
effort, per page checked, per engi-
neer. The harvest, if we are skilled,
is between 40%-60% of major
defects identified. The rest are not
found yet, but they will be found
in the final product, in testing, or
released products. Finding many
defects earlier than the test stage is
beneficial and may even pay off.
But there is a better way, which will
appeal to many organizations that
have not been able to stomach the
high costs, and low effectiveness,
of conventional inspection.

The main concept is to shift
emphasis from finding and fixing
defects early (in engineering specs
before using them for construction)
to estimating the specification
defect density and using this infor-
mation to motivate engineers to
learn to avoid defect injection in
the first place. This shift permits a
dramatic cost savings. We can sam-
ple rather than check 100% of the
specs when our purpose is meas-
urement rather than “cleanup.”

The main purpose of Agile
Specification Quality Control (SQC)
is to motivate individuals to reduce
major specification defect inser-
tion. Secondary SQC purposes are:

To prevent uneconomic major-
defect density specs from
escaping downstream — and
thus to avoid consequent
delays and quality problems.
The major tactic here is an
SQC-determined numeric
specification process exit bar-
rier, such as “maximum 1.0
majors per page.”

To teach and reinforce current
specification standards.

PROCESS DETAILS

The old inspection method was
based on the idea of checking 100%
of all pages, optimum rate checking
(one page per hour), for teams of
review engineers (two to five engi-
neers). The maximum inspection
process yield of major defects was
and is in the range of 40%-80%
depending on specification type
(e.g., 60% for software source code,
80% for requirements [more likely
30%, since malpractice is com-
mon]). The reported ability to actu-
ally correct major defects was only
five out of six attempted [1, 2]. All
this amounts to the same order of
magnitude of defects remaining as
before the quality control process
was applied. There is little or no
change in the defect insertion den-
sity. In requirements specs, this reg-
ularly (by my field measures, for

years) exceeds 100 major defects
per 300 lines of specification.

The new “Agile method” is based
on sampling the engineering
specification:

A few pages at a time

Perhaps early (first 5% of a
large volume)

Continuously (every week or
so) until the work is completed

For each individual engineer
(each one must be motivated
and trained personally)

The sampled pages will be
checked against a small set of
about three to seven rules. For ini-
tial checks, these are usually as
simple as “Clear enough to test,
unambiguous to intended readers,
no design options in the require-
ments.” Checkers are asked to
identify all deviations from these
rules. These are “spec defects.”
The checkers classify any spec
defect that can potentially lead to
loss of time or product quality as
“major” and report all major
defects to a review leader.

The entire checking session might
use only two engineers for 30-60
minutes. Once the session is over,
the estimated number of defects
actually present is calculated,
based on the total found by the
team. Generally speaking, the team

Agile Specification Quality Control

by Tom Gilb

©2005 Cutter Information LLCJanuary 200536

will be about one-third effective;
so the estimated true number of
majors per page is about three
times the number of “unique
majors” found by the team. This a
rough engineering calculation, but
it seems to work well in practice.

Exit Control
A prearranged standard is set for
unacceptable major defect density.
Initially the fail-to-exit level can be
set at “more than 10.0 majors per
page.” In the longer term — say,
beyond six months of culture
change — you should be aiming to
set the limit at more than 1.0 majors
per page. For comparison’s sake,
IBM reported a maximum 0.25
defects per page [4]. At first the
limit you set has to do with getting
better as fast as humanly possible.
Ultimately it is a matter of finding
the level that pays off for the class
of work you are doing.

Process Limitations
Please note that there are several
limitations to this simplified
process:

It does not directly deal with
process improvement.

It uses only a small sample, so
the accuracy is not as good as
with a full or larger sample.

The team may not have time
or the experience to get up to
speed on the rules and the
concept of a major defect.

A small team of two people
does not have the known
effectiveness of three or four
people.

You will not have the means of
making corrections to the
entire specification

Another consideration is that the
checking will not have been carried
out against all the possible source
documents. Usually in the simpli-
fied SQC process, no source docu-
ments are used and memory is
relied on. While this considerably
speeds up the process, it does
mean that the checking is not
nearly as accurate. Nevertheless, if
the sample turns up an estimated
defect density 50 to 150 major
defects per page (which is quite
normal), that should be more than
sufficient to convince the partici-
pants and their managers that they
have a serious problem.

It may surprise you that the imme-
diate solution to the problem of
high defect density is neither to
remove the defects from the docu-
ment nor to change the corporate
process. Instead, the most effective
practical solution is to make sure
each individual specification writer
takes the defect density criteria
(and their “no exit” consequence)
seriously. They will then learn to fol-
low the spec writing rules and, as
a result, will reduce their personal
defect injection rate. On average,
a personal defect injection rate
should fall by about 50% after each
experience of the SQC process.

A MORE FORMAL PROCESS
DESCRIPTION OF AGILE SQC

Simplified SQC Process
Tag: Simplified SQC. Version: 7
October 2004. Owner: Tom@
Gilb.com. Status: Draft.

Entry Conditions
A group of two or more suit-
able people1 to carry out sim-
plified SQC is assembled in a
meeting.

These people have sufficient
time to complete a simplified
SQC. Total estimated time: 30
to 60 minutes.

There is a trained SQC team
leader at the meeting to man-
age the process.

Procedure
P1: Identify Checkers. Two people,
maybe more, should be identified
to carry out the checking.

P2: Select Rules. The group identi-
fies about three rules to use for
checking the specification. My
favorites are clarity (“clear enough
to test”), unambiguous (“to the
intended readership”), and com-
pleteness (“compared to sources”).
For requirements, I also use “no
design.”

P3: Choose Sample(s). The group
then selects sample(s) of about one
page in length (300 noncommen-
tary words). Choosing a page at
random can add credibility, so long
as it is representative of the content
subject to quality control.

P4: Instruct Checkers. The SQC
team leader briefly instructs the
checkers about the rules, the
checking rate, and how to docu-
ment any issues and determine if
they are majors.

1A suitable person is anyone who can
correctly interpret the rules and the
concept of a “major” spec defect.

Get The Cutter Edge free: www.cutter.com Vol. 18, No. 1 37

P5: Check Sample. The checkers
take between 10 and 30 minutes
to check their sample against the
selected rules. Each checker
should mark up his copy of the
document as he checks it, under-
lining issues and classifying them
as “major” or not. At the end of
checking, each checker should
count the number of “possible
majors” he has found on his page.

P6: Report Results. Each checker
reports to the group the number of
“possible majors” she found. The
SQC team leader leads a discussion
to determine how many of the pos-
sible majors are actually likely to be
majors. Each checker determines
her number of majors and reports it.

P7: Analyze Results. The SQC team
leader extrapolates from the find-
ings the number of majors in a sin-
gle page (about six times2 the most
majors found by a single person or,
alternatively, three times the unique
majors found by a two- to four-per-
son team). This gives the major
defect density. If using more than
one sample, he will average the
densities found by the group on dif-
ferent pages. The SQC team leader
then multiplies this average majors-
per-page density by the number of

pages to get the total number of
major defects in the specification.

P8: Decide Action. If the number of
majors per page found is large (10
majors or more), then the mem-
bers of the group have to determine
how they are going to get someone
to write the specification properly.
There is no economic point in look-
ing at the other pages to find “all the
defects” or correcting the majors
already found. There are too many
majors not found.

P9: Suggest Cause. Choose any
major defect and think for a minute
why it happened. Then jot down a
short sentence, or better still a few
words, to capture your verdict.

Exit Conditions
Exit if there are fewer than five
majors per page extrapolated total
density, or if an action plan to
“rewrite” has been agreed.

AGILE SQC IN ACTION

At a Jet Engines Manufacturer
At one client, a maker of jet
engines, we sampled two pages
of an 82-page requirements docu-
ment. Four managers checked
page 81, and another four man-
agers checked page 82. These two
pages involved the “nonfunctional”
requirements (security, etc.).

We agreed to check the pages
against the following rules:

Unambiguous to intended
readership

Clear enough to test

No design specs mixed in

We agreed that violation of any one
of these rules constituted a spec
defect, and we set a spec exit level
of “no more than 1.0 major defect
per page.” The managers were
given 30 minutes to check their
respective pages. At the end, the
four managers who had checked
page 81 had found 15, 15, 20, and
4 major defects, respectively. The
members of the page 82 group
found 24, 15 , 30, and 3 majors
each.

From this data, we could determine
the number of unique major
defects found by the team. We
could either log unique major
defects (at three minutes each, it
would be a three-hour job using
nonagile methods) or estimate the
result approximately. All managers
chose the latter option.

To estimate the number of unique
majors (nonduplicate, not counting
as more than one, the same defects
found by two or more checkers),
we can estimate by doubling the
count of the largest amount found
in a small group. This approach is
based on observations done at Cray
Research [2], and it works well. In
this case, it means that the page 82
group found about 60 (i.e., 2 x 30)
unique majors per page. The page
81 group had about 40 total unique
major defects they could log if they
so chose.

But as I observed earlier, checkers
do not find 100% of the majors
defects present — they find about
one-third. We can easily prove
that this is true. Begin by removing
the major defects you have identi-
fied. That should leave twice that

2The reason we multiply by 6 is that we
have learned through experience [2]
that the total unique defects found by a
team is approximately twice the number
found by the team member who uncov-
ers the most defects. We also find that
inexperienced teams using simplified
SQC seem to catch about one-third of
the major defects that are actually there.
So 2 x 3 = 6 is the factor we use (or 3x
the number of unique majors found by
the team).

©2005 Cutter Information LLCJanuary 200538

number remaining. This sounds
incredible. How could people miss
so many on a single page? The
proof comes when you repeat the
checking process and predictably
find one-third of the remainder —
and can prove they were there on
the first checking pass. Skeptics
turn into believers at this point.

In this case, the managers accepted
my assertion that the 60 majors
they found on page 82 were an indi-
cation of about 180 majors on the
page (and 120 majors on page 81,
positing the same density as page
82). This means that the document
had an average of 150 — that is,
(120 + 180)/2 = 150 — majors per
page. I asked the managers if they
felt this was probably typical for the
other pages covering the functional
requirements. They said (and all
managers do say) they had no
doubt that it did. This meant that if
the requirements document had an

average of 150 majors per page on
82 total pages, it contained 12,300
major defects overall!

Now, it’s important to note that not
all major defects in specs lead
directly to bugs. Two pieces of
research I recall showed that 25%
to 35% of the majors actually turn
into bugs. I have found that a good
rule of thumb is that one-third of
the major defects will cause bugs in
the system. This implies that 4,100
(i.e., 12,300/3) bugs will occur in
the system in question.

One of my clients (Philips Defence,
UK; see [2]) studied about 1,000
major defects found in spec inspec-
tion (from a wide variety of engi-
neering specs, not just software)
and discovered that the median
downstream cost of not finding
them would have been 9.3 hours
each. So I use 10 hours as a rough
approximation of the cost of fixing

a bug downstream in the test and
field stages.

For my jet engine manufacturing
client, that suggests 41,000 hours of
effort lost in the project through
faulty requirements. I was quite
shocked at the implication of this
quick estimate based on a small
sample, but the managers were
quite at home with it. “Don’t worry,
Tom,” they said, “we believe you!”

“Why?” I said.

They replied, “Because (and we
know you did not have any inkling
of this) we have 10 people on the
project, using about 2,000
hours/year, and the project is
already one year late (20,000
hours). And we have at least one
more year of correcting the prob-
lems before we can finish!”

In an Air Traffic Control Simulator
A client had a seriously delayed
software component for an air
traffic control (ATC) simulator. The
contract dictated about 80,000
pages of logic specifications. The
supplier had written and approved
about 40,000 pages of these. The
next stage for the logic specs was
writing the software.

The divisional director gave me the
technical managers for a day to try
to sort out the problem. These men
had all personally signed off on the
40,000 pages of specs. We pulled
three random pages from the
40,000, and I asked the managers
to find logic errors in the specs —
errors in the sense that, if coded,
the ATC system would be wrong.
Within an hour of checking, they
as a group had found 19 “major

Specification quality control (SQC)
Review

(go/no go)

Source

documents

Decisions

and

actions

to be

taken

Kin

documents

Main

specification

Rules

Specification

rules

Clear,

complete, and

unambiguous?

Specification

review

rules

Right thing

to do?

Entry

process
Task process

Exit

process

Change requests

for source and

kin documents,

and suggested

process

improvements

After exit

from a

specification

process

and associated checklists

Main

specification

(SQC exited)

Main

specification

(SQC exited)

Figure 1 — The SQC process: a model that applies both with and without
“sampling”— the Agile option [3].

Get The Cutter Edge free: www.cutter.com Vol. 18, No. 1 39

defects” in the three sample pages,
pages they agreed were represen-
tative of the others.

That evening, the director took 30
minutes to check the 19 defects
personally, while his managers
and I waited in his office. He finally
said, “If I let one of these defects get
out to our customer, the CEO would
fire me!

Now, the 19 defects found in the
three pages really represent about
three times that. The managers
probably did not find two-thirds of
the existing defects. So the man-
agers had signed off on about 0.76
million bugs (19 x 40,000), and they
had only done half the contracted
logic specification. Clearly, the sam-
ple told us a lot.

We got to thinking that afternoon
about what could have been done
better. The conclusion was that we
had a “factory” of analysts produc-
ing about 20 major defects per page
of ATC logic specification. We also
concluded that if we had taken
such a sample earlier — say, after
the first dozens of pages were writ-
ten — we might have discovered
the defect density and done some-
thing effective about it.

I asked one manager, whose signa-
ture was the third one on the spec
approval, why he signed off on
what we all acknowledged was a
tragedy. He told me it was because
“the other managers signed it
ahead of him.” I guess that is when
I lost faith in management
approvals.

It’s too bad that this company did
not have Agile SPC as a practice.
The project got completed, but
only after being sold off to another
industry. The director lost his job,
and it was not just for a single
defect. His corporation, I later real-
ized, had a bad ingrained habit.
They did not review specifications
until they were all completed.

The approach we finally success-
fully used to move the project out
to the customer was evolutionary
delivery — even though my client
initially said that it could not be
done “because it was not in the
contract.”

CONCLUSION

Agile SQC costs very little, but it can
drive defect injection down by an
order (and then, with time, two
orders) of magnitude. The key SQC
concept compared to traditional
software inspection methods is to
measure by sampling and use the
information to motivate people to
“learn the rules” (standards, best
practices) and reduce their defect
injection rate.

Conventional inspection tech-
niques are doomed to high costs
and low impact because they can
only hope to find about half the
problems, and they can only do that
by spending around three to four
hours of engineering effort per page
on all pages of specification. For
many organizations, Agile SQC may
prove a better alternative.

REFERENCES

1. Fagan. M.E. “Advances in
Software Inspections.” IEEE
Transactions on Software
Engineering, Vol. SE-12, No. 7,
July 1986, pp. 744-751.

2. Gilb, T., and D. Graham. Software
Inspection. Addison-Wesley, 1993.

3. Gilb, T. Competitive Engineering.
Butterworth-Heinemann,
forthcoming 2005.

4. Humphrey, W.S. Managing the
Software Process. Addison-Wesley,
1989.

Tom Gilb is a consultant, author, and
teacher. He has published nine books
and numerous papers. Immediately
forthcoming is his latest book,
Competitive Engineering.

Mr. Gilb primarily works at changing
systems engineering cultures in large
multinational corporations. His major
technical interests are in the areas of
requirements engineering, design and
architecture, evolutionary project man-
agement, and specification quality
control (inspection). His clients include
McDonnell Douglas/Boeing, BAE Systems,
HP, Nokia, Sony/Ericsson, Philips,
CitiGroup, Intel, Microsoft, Canon, and
United Defense. He does pro bono work
for US DoD, UK MoD, various charitable
organizations, and in developing coun-
tries, such as India, China, and Korea.

Mr. Gilb started working for IBM in 1958.
He stayed at IBM for five years and has
been an independent consultant since
then. He was born in California and lives
in Norway.

Mr. Gilb can be reached at Tom@
Gilb.com; Web site: www.gilb.com.

